Frame Interpolation and Motion Blur for Film Production and Presentation

 \geq

2013 GTC Conference, San Jose

Keith Slavin, isovideo LLC (slides 20 to 22 by Chad Fogg)

What we have today

- 24 frames/sec is too low to avoid judder on fast moving camera pans with detail
- To avoid judder (a perception of uneven motion), low frame rates require some combination of:
 - Iow light levels,
 - low camera motion,
 - out-of-focus backgrounds, or
 - motion blur (larger shutter angles).
- Existing deblur algorithms assume global camera motion and are heavily iterative (slow)
- No algorithms known today will undo local motion blur nor (with noise and Cramer-Rao bounds) analysis) should we assume they will ever exist!
- Films made today don't look good on the best display systems of today definitely not near limits of human perception, and not "future proof"
- Europe is also subjected to a 4% speedup from 24 -> 25, requiring damaging audio pitch conversion for some viewers

What we have available Today

Motion-Compensated Frame Rate Conversion

- Motion vector quality from 24 to higher frame rates is strongly scene dependent.
- > Obtaining high quality motion vectors from occlusion and revelation is an open problem.
- Motion aliasing is common in repetitive man-made objects and wagon-wheels
- Frame-to-frame motion where an object does not overlap itself is very problematic
- > Up-converted 24 looks smooth-and-blurry, with effective shutter angles $>> 360^{\circ}$

And the Consequences Are...

Most people end up viewing movies with duplicated frames, and many with additional 3:2 judder on fixed 60HZ refresh displays.

This talk is about judder, frame rates, blur, motion estimation, interlacing & deinterlacing, and also their effects on compression.

Judder Perception

For a display refresh frequency and refresh period F_{R} ,=1/ T_{R} and a video frame-rate F_{L} , we expect each video frame to be presented an average of n times, given by:

$$\frac{F_R}{F_v} = \frac{T_v}{T_R} = n = a p + b q$$

Where p,q represent the two nearest distinct integer repeat rates, given by

$$p = \lfloor n \rfloor$$
, and $q = p + 1$

and a,b are the relative weightings, such that

a+b=1

This gives:

$$a=1+p-n$$
 and $b=n-p$

The repeat values have associated presentation times $T_p = p T_R$ and $T_q = q T_R$, where $T_p < T_q$. We associate an overall weighted judder score for these time periods:

 $Judder = J_{Tp} a + J_{Tq} b$ Where J_{τ} is a judder measure as a function of presentation time. We expect that:

$$J_{Tp} < J_{Tc}$$

isovideo GPU Technology Conference, 2013

Experiment involved:

1) using our Legato MCFRC to convert to many frame-rates, no added blur 2) using refresh rates that are an exact multiple of frame rates.

120Hz: 0.0083, 0.0166, 0.0250, 0.0333, 0.0417, 0.0500, 0.0583, 0.0666

The perceptual judder function was found empirically to be a sigmoid function of the frame presentation time J_{τ} :

$$J_T = \frac{1}{q+1}$$
, where $q = e^{(T_{center} - T)/T_{gain}}$

where for "crowd-run" clip at viewing distance 1.5 x picture height:

 $T_{center} \approx 42 \text{ ms} \text{ (about 24Hz)}$

 $T_{\text{gain}} \approx 6.25 \text{ ms} \text{ (about 160Hz)}$

and presentation time T is integer multiple of monitor refresh $T_{refresh} = 1/F_{refresh}$. $T_{\rm center}$ is proportional to a global measure of object velocity for a scene.

isovideo GPU Technology Conference, 2013

6

Example 1: if F_{R} =60, F_{v} =25, then *n*=2.4, *p*=2, *q*=3, *a*=0.6, *b*=0.4. We obtain two presentation times: T_{p} =2/60=0.033, T_{q} =3/60=0.050 seconds. From the graph, $J_{0.033}$ = 0.19, $J_{0.050}$ = 0.80, so:

 $Judder = 0.6 J_{0.033} + 0.4 J_{0.050} = 0.6 \times 0.19 + 0.4 \times 0.80 = 0.434$

Example 2: if F_{R} =60, F_{v} =24, then *n*=2.5, *p*=2, *q*=3, *a*=0.5, *b*=0.5. The same presentation times apply, so:

 $Judder = 0.5 J_{0.033} + 0.5 J_{0.050} = 0.5 \times 0.19 + 0.5 \times 0.80 = 0.495$

The above shows simple linear interpolation from one point on the sigmoid to another. The set of points is determined by the monitor refresh rate.

Example 3: if F_{R} =60, F_{v} =50, then *n*=1.2, *p*=1, *q*=2, *a*=0.8, *b*=0.2. The presentation times are: 1/60=0.0167, and 2/60=0.033 seconds.

 $Judder = 0.8 J_{0.0167} + 0.2 J_{0.033} = 0.8 \times 0.015 + 0.2 \times 0.19 = 0.05$

7

Judder Perception & Blur

Judder perception is discordance between natural (smooth) and perceived motion in our vision system

Shutter angle 120° – may see judder

360° shutter - no judder-but may look blurry at low frame rates

Upsampled - Shutter angle 720° No judder but blurry

isovideo GPU Technology Conference, 2013

Judder Perception – a Summary:

- > Judder perception is discordance between natural (smooth) and perceived motion in our vision system
- > Perception varies between people
- Perception is proportional to speed of object motion
- > Perception decreases with motion blur
- Perception increases with amount of detail/texture/edges in an object
- Perception increases with light levels and contrast
- Perception increases with solid angle of moving object to eye
- Perception increases with longer presentation times of individual images
- > Perception increases for any larger integer multiples of refresh time in a rendering cadence
- "Frequencies" are not an issue this is all about presentation time

Where Movie Production needs to go

- Large subtended angle, bright, high refresh rate displays are becoming common
- Sufficient movie information needs to be captured to meet human vision limitations
- Improved cameras and increased compute power allow new solutions
- Movies need to be near human perception limits

Solution: high frame rates \rightarrow min. blur from cameras, none from graphics/effects

- Motion-compensated frame rate conversion then works well ۹
- Simulated motion blur can be added for those who like 24 frames/sec ۲

Reference: High Frame Rates Solve all Conversion Problems

- HFR reduces MCFRC problems associated with occlusions. ۲
- HFR reduces the likelihood of aliasing in the reference. ۲
- HFR uses faster shutter speeds, with much less motion blur. ۲
- Motion deblurring is never required. ۲
- Reduced motion blur improves edge detail allows MCFRC to work better. ۲
- Motion blur is small enough that it doesn't adversely MCFRC algorithms. ۲
- In down-conversion, simulated motion blur can be added. ۲
- New, fast technologies allows high quality derivatives to be created at will. ۲
- For post-production, the "product" is the reference work. ۲
- Derivatives can be automatically generated some might prefer to adjust blur scene-by-scene. ۲
- Experiments are on-going to add blur automatically based on scene analysis. ۲

GPU acceleration of Motion-Compensated Frame-Rate Conversion

- Legato-cinema is our CUDA-based MCFRC product, with simulated motion blur. \succ
- Without blur: 90 frames/sec output rates for 1080p50 to 60 conversions. \succ
- Motion blur is implemented by upsampling to a higher frame rate and averaging groups of frames. \geq
- Blur typically slows output to around 20 frames/sec. \geq
- "Simulated" shutter angles are used to control motion blur familiar paradigm for the movie industry. \geq
- Estimate of input shutter angle can be used to control oversampling. \geq
- Smaller input angles (higher oversampling) is visually safer, but mostly just slows conversions. \succ
- The output angle controls the added output motion blur as expected. \geq
- Motion deblur will probably never be supported! \geq

System Issues

- 16-bit CUDA processing \rightarrow improved SNR and simpler workflow \succ
- Dynamic GPU resource allocation: multi-GPU systems avoid bottlenecks. \geq
- Frame-grained parallelism achieves efficient conversions in multi-user systems and conversion \geq pipelines.
- Our lossless 2:1 super-fast compression tool can be used to help preserve quality over many \geq operations, while doubling storage bandwidth and halving file sizes.
- Relatively low CPU usage allows CPU intensive tools like x264 encoding to be in a processing \geq pipeline.
- On our 3.8GHz over-clocked Intel 3930K reference machine with Samsung SSD 830, and VDPAU, \succ we have been able to smoothly display 3840x2160 clips at 50 frames/sec.

13

Deinterlacing

- Same raw video bandwidth, each frame \rightarrow two fields, double temporal sample rate \geq
- Doubling temporal sampling can reduce the perception of judder, but... \geq
- Sampling is spatially damaged by discarding alternate odd/even lines \geq
- "Tearing" occurs from motion, so at some stage, deinterlacing for progressive displays is required \geq
- Computation grows exponentially for an asymptotic improvement as more input samples become \geq involved in reconstruction
- Excellent deinterlacing quality is computationally very expensive \geq
- OK results are possible for 1080i if the output is spatially low-pass filtered but why not use 720p? \geq
- Human vision limitations \rightarrow don't sit too close \geq
- Spatial damage means modern compression algorithms (H.264 and HEVC) can do better with the \geq same frame rate vs field rate at the same SNR

> A compressed interlaced transmission system can be replaced with:

deinterlace \rightarrow compress \rightarrow decompress \rightarrow reinterlace

- > Interlaced (blue) samples on left \rightarrow noisy channel to right
- > Noise from (a) influence of interpolated (red) samples on compression, and (b) lossy compression
- > Deinterlacing provides "progressive" video at the end of transmission for future-proof system integration
- Deinterlacing provides "progressive" video for archives where the original interlaced can be extracted with an improved SNR vs compressing raw interlaced directly.

/stem integratior n be extracted

TV Distribution & Broadcast

"piecemeal" replacement of interlaced capture/production/distribution systems is possible. May take a *long* time. No technical barriers remain. Motives for migration include:

- Lower bit rates lower costs ۲
- Progressive systems or better deinterlacers \rightarrow improved distributed image quality ۲
- Better control of final quality (no deinterlacers "in the wild") ۲
- Lower transmission bandwidth/channel in future ATSC (>=2.0) broadcast ۲
- Better integration with Internet and computer-based display systems. ۲
- Better access to portable devices (which can't/don't deinterlace) ۲
- Simpler production and editing ۲
- Simpler conversion between formats (scaling, frame-rate-conversion, etc) ۲

Demeler Deinterlacer

- CUDA-based motion estimation is particularly effective for most of picture area ۹.
- CUDA: diagonal interpolation improves results in some situations ۲
- CUDA: any failures in motion estimation and diagonal interpolation (resulting in combing) are ۲ detected and patched
- Faster than real-time performance is possible with two GTX 580s or GTX 690s. ۲
- Demeler has low flicker and **no output filtering** \rightarrow Low Flicker Field Pass-Through (LFFPT) ۲
- LFFPT \rightarrow lossless compressed deinterlaced archives can recover the original interlaced video. ۲
- LFFPT \rightarrow an average 15% bandwidth reduction when used before H.264 or HEVC compression, ۲ instead of compressing interlaced directly.

Moving an Interlaced File from Interlaced -> Deinterlaced Archive

Updating a Deinterlaced Archive (new Deinterlacer)

Interlaced vs. deinterlaced (HEVC)

fine detail is preserved, and input fields passed through unchanged.

20

Results so far...

On the diverse but challenging test sequence set chosen.

- deinterlaced HEVC coded frame sequences average -15% (lower bit-) rates than HEVC coded field sequences (fixed QP=22,27,32,37, HM 8.0). Range is -39% to +32%
- Pre-encoding deinterlaced AVC coded sequences average lower rate than AVC MBAFF coded frame sequences (-18%). Range [-40%,+22%]
- Bdrate() suggests deinterlacing prior to encoding is better than deinterlacing after decoding.

Upgrading to HEVC

Video Processing (color; LPF;..)

Viarte Professional Quality Standards-Conversion/Transcoding Server

- Simple deployment Viarte is file-based and mountable as a shared drive, ۲
- Scalable to multiple servers, ۲
- Configurable drag-and-drop triggers one or more conversions, ۲
- Faster-than-realtime full-HD throughput via i) load-balanced multi-GPU acceleration and ii) an ۲ intelligent optimizatiion (that speeds up throughput by up to 250%).
- Bit-rate reduction achieved by customizing frame rates and images sizes for distribution to mobile ۲ networks, while maintaining or improving picture quality.